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We study dynamical evolution of boson stars in general relativity.

I. MOTIVATION FOR STUDYING BOSON STAR: LITERATURE SURVEY

The study of boson stars find its motivation from various angels: For example they provide a good model to
test theory of General Relativity. It’s a good model (singularity-free) to learn the nature of a strong gravitational
fields.(no one has ever done serious dynamic studies with boson star: test of GR against other graviational theories
such as Scalar-Tensor theory.

In a more physically relevant contexts, scalar fields have been suggested in various contexts. For example, inflaionary
theory proposes scalar fields as a DM candidate, electroweak theory proposes Higgs boson. In Kaluza-Klein and
Superstring theories, scalar fields are fundamental fields which appear in a natural way after dimensional reduction.

Boson star: complex scalar field can form stable configuration having negative binding energy.— Epq = M — Nm?

Global U(1) gauge symmetry —;, charge/total number of particles conserved.

For small perturbation: there is characteristic oscillation frequency: e.g. see Seidel and Suen, PRD 42,
fig6(oscillation frequency of star vs total mass) w ~ M? at the Newtonian limit and curve reaches the top (wpmqez) and
drops.

number of particle N is usually astronomically large.

equilibrium state of boson star: balance between kinetic energy(K.E.) and gravitational energy(G.E.)

KE ~p~ % per particle. total K.E. ~ N% ~ X ~mN.

GM? f
GE. ~ M 2
K.E ~ G.E. implies GM? = N where N ~ S0 M ~ —1- and G ~ Mp}. So M ~ Mg’ for non-¢* type coupling.
astrophysical:
79

3 2
compton wavelength of a free boson ~ m™! from % With self-interaction M ~ v/A Tfnpg and w/o it M ~ Mn’;’f and

N ~ A;In%’ With self-interaction for m ~ 1 Gev, M ~ Mg,,. this boson star is a possible candidate for non-baryonic
dark matter, possibly detectable by microlensing experiment.

boson star is a candidate for dark matter that could have been created during a phase transition.

Galactic halo itself a condensed bosonic objects.( ?7)

Mass of boson star could be as big as solar mass, but their size would be certainly as large as 10s or 100s km.!!

OK, I am very unorganized so far. From Kip. Thorne’s article gr-gc/9706079, it says that when WD, NS or small
BH spirals into a much more massive, compact central body, the inspiral waves will carry a “map” of the massive
body’s external spacetime geometry. Since body’s spacetime geometry is uniquely characterized by the values of the
body’s multiple moments, we can way equivalently that the inspiral waves carry, encoded in themselves, the values of
all the body’s multipole moments. By measuring the inspiral waveforms and extracting their map, we can determine
whether the massive central body is a black hole or some other kind of exotic compact object. If the measured
moments satisfy the black-hole “no-hair” theorem, i.e., if they are all determined by the measured mass and spin,
then we can be sure the central body is a black hole. If they violate the “no-hair” theorem (BTW how could we be
so sure?) then either the central body was an exotic object— e.g. a spinning boson star— etc..

For boson star, stress energy tensor is anisotropic. Therefore the concept of an equation of state is completely
inappropriate.

How to compute total energy instead of total mass(I have been computing total mass all along)? E =T + V.

from note.tex

Sun. MAY 11, 1997
Matt suggested to look at the problem of relativistic boson star binary. It’s good place to come back to GR, brush
my old knowledeg of GR. As usual, the first problem to look at is in the context of spherically symmetric boson star.



Now, go back to Matt’s thesis for spherically symmetric case and Robert’s thesis for 3D case. Survey of relativistic
boson star.
KG equation:

¢y —m*p=0 1)

Introduce auxilary variables such that a ¢ and ﬂft do not appear in the KG equation.

Start with spherically symmetric ground state problems. Matt’s diss, SS-PRD42 paper, Colpi et al paper.

Slicing condition: Polar slicing and maixmal slicing

Might want to try PN computation for boson star. — previous PN study of boson star? Want/Need to know
EOM for each potential U, V;, W;, PHI, PHI>, PHI3, PHI; Need to know EOM for scalar field. D. Lai, PRL 76,
4878(1996)

Neutron Stars: the existence of an absolute mass limit is truly a GR phenomena: pressue, which supports the star
against gravity, also acts as s source of gravitation.

NS binary merger: (1) source of gravitational wave (2) cosmological gamma-ray bursts

PN approximation: the inspiral at larger orbital radius may be treated by PN approximation

Question: how tidal field modifies the mass limit and central density limit of a compact object

Will, Clifford M. /Theory and experiment in gravitational physics./Rev. ed. 1993
QC 178 W47 1993

Will, Clifford M. /Was Einstein right? : putting general relativity to the test. / 1986
QC 173.6 W55 1986

Study of PN approx. MTW ch 39; This post-Newtonian approximation can then be used to calculate general
relativistic corrections to such phenomena as the structure and stability of stars.
Most general spherically symmetric metric can be written by

ds® = (—a? + a®B?)dt? + 24> Bdtdr + a*dr® + b*r’dQ? (2)

Choosing radial condition( b = 1 ) which renders r direct geometric meaning( 47r = proper surface area for the 2
sphere of radius r ), polar slicing condition( K = K ) which implies K g = 0 and zero shift which is actually implied
by polar slicing( MattDiss p110 ), we get

ds® = —a’dt® + a’dr® + r*dQ? (3)

(we define mass aspect function to signal the formation of black holes, M (r) = ir(1 — a 2). Derivative of the mass
aspect is given by. )

Eqns to solve are (3.5) in Seidel and Suen PRD paper.

Reference
Matt/Robertdiss, RELBOSpapers

II. COORDINATE CONDITIONS

gr-qc/9808024 Kip S. Thorne: Ideas on how to set coordinate conditions to keep the coordinates co-rotating, here
he proposed a testbed problem to test coordinate conditions suggested as co-rotating. His model problem is somewhat
like binary neutron star system. He propose “minimal-strain” lapse and shift equations.

III. EQUATIONS, ETC.

Thu. MAY 29, 1997
(NEW) to compare with Fig.2 of SS PRD paper, we need to compute gy = -a2, g = a2, p = - T}.
Note here that energy density p in GR is different from Newtonian case. Of course!

The scalar field Lagrangian is

1 1 1
— _Zg"p* 4 _ 2 2 _ - 4
L==30" 860 — 5m*l6l* = {N8) 4



which implies an energy—mometum tensor

T = 20" (8 + 6083 — 306N B + IO + NG )
For A = 0, we get for - Tg,
T = 20 (800 + 608%) — 508(0" B + Il + SNl ©
= (o) — 5(8 B + m7loP) 7)
= ™(Ba0) — (6™ ad0 + 07 +mlo%) ®)
= 2 (b0 — g7 G~ m?I6P) ©)
p= T = S0 @b+ a2, +mloP) (10)

up to here from note.tex

IV. INITIAL DATA
The spacetime line element, in its most general format, is
ds® = (—=a? + a®B?)dt? + 2a*Bdtdr + a*dr® + r’b*dQ> (11)

To set up the initial data, we assume

a=>b=1? (12)
8=0 (13)
(14)
To set up ID in a 3d cartesian coordinate, We use the following form for the boson star initial data.
ds? = —a?dt? + ¢*6;;dx’ d’ (15)
We assume
¢ = goe™ ™" (16)

We will use Gygg, Klein-Gordon Equation, and maximal slicing condition.(since we are gonna use maximal slicing
condition for evolution, consider this when generating ID)(conformal flatness is only for ID and maximal condition
fixes lapse function which we are free to choose-as far as it’s consistent with other conditions.)

Then, we get in spherical coordinate system,

2
Goy = 45 (1 +20) (17)
Grr = S2rg2 W (0590, +4r(,)*0” + 4,10 + ) (18)
Too = 5(w2¢2+a2¢*‘*<¢ P+ + a2 5o (19)
T = 26,0 + 045567 — vim?g? — ' 24 (20)
G = (=02 4, 9112, s 2sin’0) (21)
gt = (—%,¢_4,¢_47‘_2,¢_4r—2sin*20) (22)
(23)



Klein-Gordon equation:

(Bor)g —m’$ — Ng|$ = 0 (24)

9, (avhgh’ 8,8) = aV/h(m2é + N ¢|*9) (25)

Or(av'hg""0,) = avh(m” — % + All*)e (26)

Vh = ¢5r%sing (27)

gr=y* (28)

(@r)0,,6 + (200 + a,ry? + 2ar, )6, = avPr(m? — 2 + o) (29)

May. 2nd, 1998

now as Matt suggested I will use maximal slicing throughout the evolution. therefore initial data should be consistent
with this condition.

I will use three equations to set up spherically symmetric initial data. They are Gy = 87Ty, Maximal slicing
condition, Klein-Gordon equation.

Gy = 87Ty and Klein-Gordon equation(29) are given above.

First assumptions going into ID are

(1) KG field ¢ takes the form ¢(r,t) = ¢o(r)e !
(2) time-symmetric data ie, K;; =0
(3) conformally flat(15) condition(which is true only on initial slice)
(4) zero shift, ie, 3¢ = 0
Now maxmal slicing condition is given by
aff = alKy K +4n(S +p)) (30
i ]_ o
afi = o (r2¢2a) (31)
1w, 1 2 2,2, A4
P—§(E¢ +E(¢,r) +m¢ +§¢) (32)
3 w? 5 Ao ., 11 5
S =tr(Si) 5(@ —m” — §¢ )$” — 5@(‘%) (33)
w? 2 Ao
S"‘P:(Qg—m —§¢)¢ (34)
(here i referred matt’s thesis, page79 (4.7))
So maximal slicing condition is given by
1 22 '\ _ w? 2 A oo
o2 (ra) = 477“(2@ -m"— §¢ )¢ (35)
Let A=q'. Then,
! 2 ¢’ 4 oW 2 A gy o
A +(r+2¢)A A7) 01(2042 m 2¢)¢ =0 (36)
So writing down the equations to solve in frist order forms,
) =T (37)
b2 1 2 5 W’ 2, Ao o
U = T\IJ 87r8(¢<1> +¢(a2+m +2¢)¢>) (38)
¢ = (39)
! 2 A 20 w2
d =—(2 - 2V 4 2 _* 2 4
G+ 2+ 200 +0' = 5 + 260 (40)
o =A (41)
2T 4 o w? 5 A oo
A = —(; + QE)A+ 4myp 04(2? —-m- — §<75 )¢ (42)



Now, let me derive the equations for harmonic slicing condition.

-y (13)
Then

= (44)

T = ——lIl 8= (¢<1>2 +¢5(¢12 +m?+ 2 ¢2)¢>2) (45)

5 (46)

3 = (2 85)@ + i (m? ¢12 +A¢%)o (47)

Stable branch lies below o = 0.0382. This is from PRD 42 Seidel and Suen paper. They have & = ——t—

where @ is our(Dale’s) scalar variable and maximum stable ¢ is given by 0.271 in that paper. So maximum kg field
at the origin for us is 0.0764. Any initial data with central density above the value should be physically as well as
numerically unstable.

ADM mass defined for conformal metric: m = —5= [ VZd®z

In spherically symmetric spacetime, m = lim,_ >mf( 2r21 ) (from matt’s thesis.)

To generate initial data:

¢t 1) = go(r)e ** (48)
Initial data generator gives us ¢o(r). Then,

_ Odo(r) x

bz = G- (49)
0

8y = 200 (50)

_ Ogo(r) 2
¢, = o r (51)
¢t = —iweo(r) (52)

Dimensional argument for mass of boson star. mp; = G112 @G = m;f- Schwarzschild raduis 2M G = r where

ro~ % (p is momentum) from the Heizenberg uncertainty principle. p =~ m for relativistic regime. Therefore

M=~ l/m o M3,
2/M m

V. OUTER BOUNDARY CONDITION

(1) scalar field: outgoing wave condition(robin type)

To be rigorous, we have to adopt pretty complicated outer boundary condition. For massless case, the propagation
speed is independent of the wavelength (because ¥ is constant asymptotically) so the outgoing wave condition is

simply given by
19(r¢) , 1 9(r¢)

a ot Tgn o O (53)

For massive case, you use w? = k? + m? for SR(Newtonian) case. (We get this from the KG eqn. in SR limit assuming
that ¢ = ¥;e!“!=P) ) But for massive GR case, the dispersion relation is (w/a)? = (k/grr)? + m2.

But for the starter, I will implement a simplest possible OBC. Which is flat space massless outgoing radiation
condition(Matt thesis p68). Which is given by

(ré)e + (r¢).r =0 (54)

at a large r.



(r¢) s+ (ré),r =
ror+d+rod, =0

Now we have

or

¢,z - ¢,r %
or

\Y ¢,7‘6_y
or

So we get after multiplying by 2 55 ete..

TPt + $¢ +7r¢e =0
Yoo+ 2o +16, =0

24+ fqﬁ +rp.=0

Apply this condition at the n + 1 level.

n+4+1 _ 4n
¢ _ Tijk ijk
= T AL
At

For z; = zpin

0 1
(6—f)iﬂc = m(-(ﬁiw,jk + 4¢it1,k — 3dijk)
For z; = 2pmax

0 -1
(a—i)z’jk = m(—ﬁbz’—z,jk + 4¢i—1,ik — 3Pijk)

Same for y and z...

r=+/z2+y?+ 22.

At x = Tymin,

ntl At Tmin

_ +1 r +1 +1 +1

¢ijk = :;k - -Z'mzn( - ¢Zk Aw(_¢in+2,jk + 4¢?+1,jk o 3¢?jk

At 3rAt 11 rAt +1 +1
(+=-- 2mmmAx)¢’?Jk = Pijk — m(_¢?+2,jk + 4050k

Atz = Tmazy

bl _ At Tmaz 1 T ndl L guntl_guntl

%k = wk xmm( r ¢ijk + 2Aa;(_¢"—2’j’“ + ‘ﬁz’—l,jk - ¢ijk

At 3rAt ntl rAt nt1 nt1
O o St Pk = P ¥ 5 R "0k 490

Similar for y and z.....
At large r,

¢~ 11
oIl + %H +rll, =0

YT, + %H +rll, =0

AL, + fn +rll, =0

)
)

)
)

(66)

(67)



Conditions for spatial derivatives:

FOR &,,
2z 1 22
P, P, +—, +1I - ——=)¢p=0 74
2Pot + 1800 + ——Ps + +(r r3)¢ (74)
2z T
By + 18y, — T—j’¢ + %@z - T—fn =0 (75)
2xz z Tz
Z(I)z,t +’I“(I)z,z— 7‘—3¢+ ;‘I‘z - ’I‘_QH:O (76)
For x = z4n,
‘I)n+1 n _ A 1 q’n+1 4‘I)n+1 (I)n+1 2.’L’mzn (I)"+1 Hn+1 1 x?n,zn n+1 77
Tmin z,ijk zyijk) = — t(rm(— oit2,ik T4%q i1k =3 :c,z'jk) +— Qo Ty T (; - ,,.—3)¢z'jk ) (77)
2T minAt  3rAt 1 1 22,
(Tmin m;n T SAZ )(I)Z,_'i_jlk = Timin Py ik — At(T2Ax(_‘I’;L,J§J1r2,jk + 4‘1);?;J1r1,jk) + HZ':I + (; - T;n) :Tk_l) (78)
For x = Zmqq,
n+1 n — _A -1 n+1 n+1 n+1 2$maz n+1 n+1 1 x?na,z n+1
Tmaz Py ijk — Poijk) = — t(’“m(_‘l’z,i—zjk +4®, 7 i — 300 ) T —— @ I (; - T—3)¢z’jk ) (79)
2L mar At 3rAt. .4 -1 el el et 1 22 il
(Tmaz + m;f” SAg )t = Tmaz® ih — At(rm(—éz;Q,jk +497t, )+ T + (; - %)q&zf; ) (80)
For y = Ymin,
n 1 2ZYmin Ymin TYmin
min (i = Vi) = — AU g (S T AT = 380 — T A+ T — = 5T (8D)
Ymin 3rAt 41 1 +1 +1 2TYmin +1  TYmin i1
(Ymin + A ~2Ay )20 ik = Ymin®y ik — At(rm(_(ﬁ;,i,j+2,k +4970 k) — 3 ik — 2 ) (82)
For y = Ymaaz»
-1 2zy Y Ty
+1 _ +1 +1 +1 maz +1 maz +1 maz +1
Ymaa (B5 55 — 7 k) = _At(’"m(_q)g,i,jfm HART e 3%k — — 5 Pk T mijk ~ Wi (83)
Y 3rAt -1 2zy zy
(ymaz + At s ZA:U )(I)g,—tjlk = ymfw@g,i]’k - At(rm(_q)g,—;;*%k + 4(1)3,—2;71,19) o T;n‘w ¢Z—};1 - Tan H%—}c_l) (84)
For z = zmin,
1 2% 2mi Zmi TZmi
1 1 1 1 1 1 1
Zmin( Py Gk — ®F ijk) = _At("m(_q)ﬁ,ﬁz,k +ARTTL L — 305 ) — T;nm R T ,f;m e (85)
For z = zmaz,
-1 2xz z Tz
n+1 _ n+1 n+1 n+1 mazr ;n+l mar xn+l max yrn+1
Zmaw(q’x,ijk — O i) = _At(TQAZ(_(I)w,i,j—Z,k +4®, ik~ 3‘I)w,ijk) I i + @ijk T T2 Ik (86)
FOR &,,
2 1 2
y@y,t+r<by,y+7y<1>y+ﬂ+(; - ‘Z—S)qszo (87)
2yz z Yz
Z(}y,t+7'¢y7z— /r'—3¢+ ;Qy— /r-_ZH =0 (88)
2yx T T
2By + 1Py — o+ 28, — D=0 (89)
r r r
FOR &,
2 1 2
2P A8+ B, T+ (= — ) =0 (90)
r roor
2
R JP. S N - (91)
r r r
2z 2
y®.y+ 1., — T—3y¢ n %@z _ r—fn —0 (92)



(2) metric: robin boundary condition(sommerfeld?) or blending boundary conditions.
Nov. 04th, 1997

Full 3d Einstein Klein Gordon equation.

Stress energy tensor T#¥ is given by

14 1 * v X,V ]' v 3k )\
T = J($MGY + $rg) = Sg" (B + m Lol + S1olY) (93)
The Metric is given in the following form at all times.
ds® = —(a® — B;8")dt* + 2B;dz'dt + gijdz'da’ (94)
p=T"nyn, (95)
ji = —n,T¥ (96)
(98)
Auxiliary variables will be used.
®; =9, (99)
Jh
7@’ i —B3'0:) (100)
= H+ i, 101
.t T B (101)
B
where n, = (—a,0,0,0) and g** = Ed ;ij B ﬂigj
so nt = gt'n, = (%, —ﬁ—i). n# is a timelike Killing vector for zero shift so in that case p should be conserved
quantity.(prove this, i.e., T#n,n, is constant along timelike geodesics if "u is timelike Killing vector.)
Geometrical (phys1ca1) variable T is G = —R=81T. T = g*" Ty, = —a2 Too + g“Ti; = —p+ S(with g1 = 0).
. 1 Bt 1
gt = gthe. = gthy = — P pi=——1 102
¢ =9¢" =g"bu=9"ou 2%t 29 o~/ (102)
i i i i B iy B o
¢t =0"=g"bu =9"0p = 501+ (®g" — )%= \/—H +® g8, (103)
69" = o (2, +TT,) (104)
. ) 24 2(3) i
ot gt Tyt = — 2, + 112 e®re + i@ im 105
¢¢+¢¢ agh(re+z) Oé\/_( ]7+ J) ( )
* 1A ) A %y * 1 * ﬁi 3) ,ij
A =gt + = (—=II* + fi®?)(— —=II) + & (=TT +® i 3,
1 .
—E(HZ +112,) +&) g9 (®; 6@ j e + Piim Pjim) (106)
¢ ¢J + ¢,z¢] = ( % re‘bj,re + (I)i,imq)j,im) (107)
2 1%t 2002 A4
p=a’™iet + (%(75 R e [ (108)
-4 O« i *,7 tir x A
it= @M+ ¢t — g" (g +m?|6") + Sl (109)
N A
Sij = (¢,,¢,J +¢,i07) — gz, (e +m?|6l” + 1ol (110)
trS = ——¢ NUAR ¢,@¢” - ( *lol” + |¢I4) (111)



1(3)
2

Fam (8, + B+ J (B B

(H2 + H2 ) + = g“ (q)i,re(bj,re + (}i,imq)j,im)

MI»—A
S| =

p=

i (3) gtd
=22, +m2,) - —L
2a ( Te + 'lm) \/E

L i o
2 2
935 (—

(Hreq)j,re + Himq)j,im)

g ((I)k,req)l,re + q)Is:,imq)l,im) - 5m2( 2 )

Sz] - (I)z re(I>] Te + (bz zm(bg im

(@7 + $im)’

1
(12, + 103,

2
+(3)gkl(¢k,req>l,re + @k,im(}l,im) + m2(¢re + ¢zm)

A
2
1
h
A
§(¢re + ¢zm) )

3+1 form of Klein Gordon equation using causal differencing.

9¢
a.’L'z'

;=

o= g(at — 3'6;)¢

I, — BT0; = B0 + (aVhh ;) ; — aVhm?¢ — avVhA|$[*¢

. « .
Q; — 1, = (ﬁn),i + B32;
. o
b — B¢ = ﬁﬂ

Derivation of Maximal Slicing condition

1
8tK,-j = —D,'Dja + Oé(Rz‘j + KKU — QKHK;') + £/3K,']' - 87T04(Sij - 59,'1‘(5 — p))

Taking trace,

K = —D'Dija+ a(R+ KK — 2K K') — dra(—S + 3p) + g7 £5K;; + (8:97)K;

Using the Hamiltonian constraint equation,

R+ K? - K;i;K" = 16mp

we get,
0K = —D'D;a + a(-KyK") + 4ra(S + p) + g9 £5Kij + (8;9") K.
gij£gKij + (atgij)Kij = £5K — Kij£ggij + Kijatgij = £gK + (8tgij - £ggij)K
Orgi; = —2aKi; + £59i;
(0r — £5)gi; = —2aK5;
Then

g"19" (8, — £4)gi; = —2aK™

(0 — £)g" — 9" 9:; (0 — £5)9" — 9" 9i; (0, — £5)g" = —2a K™
(0r — £5)g™ — 650, — £5)g" — 65(8, — £3)g"" = —2a K™

(01 - £6)g" = 20K

8K = —DiD;a + a(—=KyK'%) + 47 (S + p) + £5K + 2aKV I
= —D'Dia + a(Ki; K7 +4n(S + p)) + £5K

(112)

(113)

(114)

(115)

(116)
(117)
(118)

(119)



Maximal slicing condition requires K = 0,

D'Dia = a(K;; K% + 47 (S + p)) (132)

D'Dia = g"0;0;0 — g"T};0rx (133)

Then, Maixmal Slicing condition is given by

9978,0;0 — gijl“fj(‘?ka = a(Ki;; K9 + 47(S + p)) (134)
9T = 9”59’” (9510 + git,; — 9ij0) = 97 9" gjui — ig”gklgij,l (135)
Using identities
va gi
9 Guo,p = ? (136)
9*gi1i = —g" g (137)
we get,
.. , 1 g, 1 . .
9Tl = =g = 59" = = S (g% = 97 (9" 9:5)0) (138)
2 g 2
Finally, Maximal slicing condition is
998,0;0 + (g + 59“%)8;904 — (K KV + 47(S + p))a =0 (139)

VI. MAXIMAL SLICING CONDITION: WROTE MY OWN MG SOLVERS FOR IT
gija,»aja - g“l“fj(’)ka = Oé(Kinij +47(S + p)) (140)
Let A¥ = g¥TF and B = K;; K% + 47(S + p). Then we are to solve

9"8;0;a — A*da — Ba =0 (141)
(142)

(1) test with flat, no matter
(2) outer boundary for Maximal solver:robin

From [28] we know solving Eq.(140) is not enough to control K. K is drifting from zero and this cannot be
controlled. Maximal solver doesn’t put K back to zero when « is perturbed at any time. With lapse returned to the
desirable value, but K ie. slicing still curved. I think that’s because equation we solve implies K ; = 0, not K =0 at
all times. History of lapse is important. They proposed driver condition to actively enforce maximal slicing condition.
They proposed to solve

0K

D'D;a — a(Ki; K9 + 4n(S + p)) = cK (144)
They called this K-driver.
They use time evolution to solve elliptic equations. So,
0 ) g
a—‘: = (D' Dia — a(Ki; K + 47(S + p)) — cK) (145)

Mon JUNE 30, 1997 and Fri OCT 03, 1997
Sensible and consistent slicing condition for boson star problem
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(1) maximal slicing, quasi-isotropic(isothermal) gauge
(2) zero shift, isotropic
(3) geodesic slicing

Isothermal gauge is a generalization of isotropic coordinates in spherically symmetric problems

Ref. Matt’s Thesis
Bardeen and Piran, Physics Report 96, pp205-250 (1983)
Petrich, Shapiro, and Teukolsky, PRD 31, 2459 (1985)
AM. Abrahams and C.R. Evans, PRD 37, 318 (1988)

(NEW) how does isothermal gauge work out in the 3d Cartesian coord?
(NEW) so perhaps, the easiest choice would be geodesic slicing.

QI gauge line element expressed in terms of spherical-polar coordinates:
ds® = A*(dr® + r*d6?) + B*r?(sinfd¢ + £d0)? (146)

which stems from the three coordinate component conditions

gro =0 (148)
9009¢¢ — (ga¢)2 = grrg¢¢7°2 (149)

VII. EVOLUTION

Evolution Scheme for Boson Star code using CN iteration.

gn+1 — g",KTH_l — Kn7¢n+1 — ¢n (150)
1 1 1 n n n+ 1 1 n n
= (" g7, KM = oK K, ¢ = (67 + ) (151)

gte

do loop
compute gdot, Kdot
update g"t!, Kt
get new gntz, K™t
compute kgRHS
update ¢!
get new ¢tz

enddo

Causal differencing

VIII. WILSON AND MATTHEW

IGNORE below for now. It’s relevant only for initial data where conformal flatness for metric is assumed.
Conformal flatness, compute p, j*, and S*.
Physcial quantities are related to conformal quantities by
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gij = Vi
g = yigh
Kii — ¢—10K¢ij

Assuming conformal flatness, from the definition of K;; and the maximal slicing condition, we get

§ij = —2aKij + D;B; + D;f; (159)
6

N N n . . 2 A

K= (D 4 DI 259 Dup) (160)

Maximal slicing condition ( Tr K = 0 ) itself gives us a equation for «
- 1
Aa — a(KYK;; + §(p +trS)) =0 (161)

This equation can be written in terms of conformal quantities as

. T a1 1
Ada = a(gw—SK”Kﬁ - Zﬁw—‘* + §¢4tr5) (162)

Hamiltonian constraint equation gives us a equation for
. 1 2. 5 1
A + ngaKij¢—7 + Zmﬁ =0 (163)
Momentum constraint equations give us equations for 3¢
DK% =j (164)
~ | N PPN s
ApP + gDﬂ(z)kﬁ’“) = 2K D;(anp™") + 2ap75 1 (165)
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